RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing.

نویسندگان

  • Jin Young Kang
  • Tatiana V Mishanina
  • Michael J Bellecourt
  • Rachel Anne Mooney
  • Seth A Darst
  • Robert Landick
چکیده

Sequence-specific pausing by RNA polymerase (RNAP) during transcription plays crucial and diverse roles in gene expression. In bacteria, RNA structures are thought to fold within the RNA exit channel of the RNAP and can increase pause lifetimes significantly. The biophysical mechanism of pausing is uncertain. We used single-particle cryo-EM to determine structures of paused complexes, including a 3.8-Å structure of an RNA hairpin-stabilized, paused RNAP that coordinates RNA folding in the his operon attenuation control region of E. coli. The structures revealed a half-translocated pause state (RNA post-translocated, DNA pre-translocated) that can explain transcriptional pausing and a global conformational change of RNAP that allosterically inhibits trigger loop folding and can explain pause hairpin action. Pause hairpin interactions with the RNAP RNA exit channel suggest how RNAP guides the formation of nascent RNA structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase

The conformational dynamics of the polymorphous trigger loop (TL) in RNA polymerase (RNAP) underlie multiple steps in the nucleotide addition cycle and diverse regulatory mechanisms. These mechanisms include nascent RNA hairpin-stabilized pausing, which inhibits TL folding into the trigger helices (TH) required for rapid nucleotide addition. The nascent RNA pause hairpin forms in the RNA exit c...

متن کامل

RNA polymerase-induced remodelling of NusA produces a pause enhancement complex

Pausing during transcription elongation is a fundamental activity in all kingdoms of life. In bacteria, the essential protein NusA modulates transcriptional pausing, but its mechanism of action has remained enigmatic. By combining structural and functional studies we show that a helical rearrangement induced in NusA upon interaction with RNA polymerase is the key to its modulatory function. Thi...

متن کامل

Transcription pausing by Escherichia coli RNA polymerase is modulated by downstream DNA sequences.

Escherichia coli RNA polymerase pauses immediately after transcription of certain sequences that can form stable secondary structures in the nascent RNA transcript; pausing appears to be essential for several types of bacterial transcription attenuation mechanisms. Because base changes that weaken the RNA secondary structures reduce the half-life of pausing by RNA polymerase, nascent transcript...

متن کامل

Ribosomal protein L4 and transcription factor NusA have separable roles in mediating terminating of transcription within the leader of the S10 operon of Escherichia coli.

Ribosomal protein L4 of Escherichia coli autogenously regulates both transcription and translation of the 11-gene S10 operon. Transcription regulation occurs by L4-stimulated premature termination at an attenuator hairpin in the S10 leader. This effect can be reproduced in vitro but depends on the addition of transcription factor NusA. We show that NusA is required to promote RNA polymerase pau...

متن کامل

Antisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and RfaH.

Transcript elongation by bacterial RNA polymerase (RNAP) is thought to be regulated at pause sites by open versus closed positions of the RNAP clamp domain, pause-suppressing regulators like NusG and RfaH that stabilize the closed-clampRNAP conformation, and pause-enhancing regulators like NusA and exit channel nascent RNA structures that stabilize the open clamp RNAP conformation. However, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cell

دوره 69 5  شماره 

صفحات  -

تاریخ انتشار 2018